WEHOLITE HDPE PIPE

comparison to other pipe materials...
Table of Contents

- Flexible Pipe vs. Rigid Pipe (General)
- Weholite vs. Concrete
- Weholite vs. CMP
 (Corrugated Metal Pipe)
- Weholite vs. PVC
- Weholite vs. CPP
 (Corrugated Polyethylene Pipe)
- Footnotes & Appendix
Generally, rigid pipes have the following characteristics:

- made in discrete lengths
- use gaskets in joints to form a water-tight seal
- often produced from composite materials
- minor trench deflections are accommodated by joint deflections

Rigid pipe design assumptions include:

- a sufficiently stable trench bottom to keep the pipe aligned
- bedding and primary backfill help distribute the load and minimise stress concentrations
- inherent pipe strength will primarily support imposed loads
- the gasket will be held to the desired compression by the geometry of the bell
- the pipe’s structural integrity is constant over time

Some common flexible pipe characteristics are:

- pipe-soil performance depends on the embedment quality determined and specified during design
- made from a single homogenous material

Flexible pipe design assumptions include:

- structural integrity of the “pipe” and of the “soil embedment” system is constant over time
- bedding and backfill are critical to the load carrying system

RIGID PIPES

“Rigid pipes” are sufficiently strong (both within the pipe wall and joints) to withstand most anticipated live and dead loads. A pipe’s ability to resist imposed loads is improved by “better” embedment conditions.

FLEXIBLE PIPES

“Flexible pipes” rely on the deformation of the pipe from imposed loads to mobilise the support of embedment materials on both sides of the pipe. Their primary structural function is distributing the imposed vertical loads to the surrounding soil. Some standards define a flexible pipe as one that can deflect more than 2% without cracking.

Only a small portion of imposed loads are actually carried by the flexible pipe itself. Instead, load is transferred to the surrounding bedding material. A pipe system’s load carrying capacity increases significantly with an increase in the stiffness of embedment materials. Consequently, embedment is often composed of a well-graded, angular, granular material that is well compacted.

Flexible pipes have few common characteristics. They may be manufactured in discrete lengths or welded together on site (infinite length) and gasketed joints may or may not be present.

EVALUATING PIPE PERFORMANCE

If all design factors are well understood, a suitable piping system can be created using either “rigid” or “flexible” pipe design methodology. Both methods are supported by academic review and industry standards (ASTM, AWWA, CSA, etc.) for pipe testing, qualification, and installation. However, design factors and assumptions are often not well known, incorrect, or they may change over time.

A piping system’s performance under load or embedment conditions that vary from the design assumptions is a good way of evaluating rigid versus flexible pipe.

Let’s examine a few scenarios:

INADEQUATE/IMPROPER BEDDING AND BACKFILL

A rigid piping system’s carrying capacity is the total load that can be supported by the pipe itself. For concrete pipe, this is determined by a three-edge bearing test multiplied by a bedding factor (between 1.5 and 4.42). Bedding factors between 1.5 and 2.3 apply to the four standard installation types in a trench application.

When the bedding is improperly installed, and the backfill is not properly compacted, the pipe’s strength will initially support the imposed dead and live loads.

The trench walls will support the weight of the backfill (Marston effect). But any theoretical increase in pipe strength resulting from a properly bedded and backfilled installation is compromised. Over time, the pipe will experience more and more of the trench load. Eventually, the pipe’s capacity will be exceeded and it may fail. Cracks exceeding the design limits will develop and the pipe’s steel reinforcement will be exposed to its internal atmosphere. In sanitary sewer and industrial applications, this may be corrosive to the reinforcing steel. This failure is most likely to occur well after the installation period, when the system is not being monitored as carefully.

Flexible pipe, on the other hand, relies on initial bedding, which conforms to the project’s standard requirements. For most sewer applications, this would be well-graded, granular materials that are appropriately compacted.

Limiting pipe deflection is the main factor in the design of a flexible piping system. Even when it isn’t, the expected pipe deflection is calculated. This anticipated deflection increases substantially when the project-specified bedding is not provided. Monitoring pipe deflection during the construction process will effectively ensure compliance with project requirements. Installation problems are readily apparent and can be corrected before the pipe is put into service.

UNSTABLE TRENCH BOTTOM

Rigid pipes will move when the trench bottom is unstable. Because of pipe rigidity, the joints will move and gasket compression (plus the joint seal) will be affected. Sufficient joint movement can cause the seal to be lost.

If localised loads exceed the rigid pipe’s structural limit, wall failures (cracking) may occur. Either infiltration or ex-filtration will result (flow direction will be from the higher to lower pressure area). If cracking continues, the rigid pipe may collapse.

By contrast, flexible (especially plastic) pipes will deform when the trench bottom is unstable. As such, joint area movement is minimised, reducing occurrences of seal loss. Generally, flexible pipes come in longer lengths than rigid pipes, so there are fewer joints “at risk”. Plus, fused or welded HDPE pipe systems are jointless and are therefore not subject to this problem.
WEHOLITE VS. CONCRETE

STRUCTURE AND SCOPE
Concrete pipe is formed by encasing reinforcing steel inside a concrete pipe wall. The steel can be optimally located to provide resistance to the anticipated loads. The concrete is produced from different source materials to take advantage of local conditions and/or to obtain the desirable strength or chemical resistance properties.

This product can be designed to limit small crack formation in tensile sections of the pipe to less than 0.3mm. The 0.3mm crack classifications are 40-D, 50-D, 65-D, 100-D, or 140-D. Alternatively, concrete pipe can be designed to support an ultimate anticipated load, with appropriate factors of safety. The D load classifications using this method are 60, 75, 100, 150, and 175. The specifications covering this design are ASTM C76M and CSA A257.

Weholite pipe is a profile, or structural, HDPE pipe wall. Fabricating the pipe with a profile allows for desirable stiffness properties at overall weights that are 40% less than solid-wall HDPE pipe. Weholite typically weighs less than 10% of an equivalent concrete pipe. The pipe’s structural capacity is classified in accordance with ASTM F894. The Ring Stiffness Constant (RSC) rating for the pipe is an empirical measurement of its load carrying capacity.

JOINING SYSTEMS
Concrete pipe joints are gasketed bell and spigot connections. The pipes are supplied in 2.4m (8’) lengths, to limit the weight of large diameter individual pipe sections. Weholite is also available with bell and gasket connections (in sizes up to 36’ in 20’ lengths). However, a welded (fused) connection is recommended for all Weholite pipe in sewer (storm or sanitary) applications.

Sewer specifications typically include a pressure test and/or leak test with acceptance criteria. The same “leakage” criteria apply to all gasketed pipe systems, regardless of pipe material. For welded HDPE sewer pipes, the joint’s anticipated leakage rate is zero. It has uniform structural properties along its entire length.

CHEMICAL RESISTANCE
Generally, concrete is more chemically resistant than carbon steel pipe, but much less so than HDPE. Concrete is vulnerable to hydrogen sulfide, which forms when solids in sanitary wastewater are unable to stay in suspension. This often occurs in collector sanitary sewers during periods of low flow.

Concrete pipe gaskets conform to the requirements of ASTM C443 and F877. Gaskets for HDPE Weholite pipe conform to the requirements of ASTM F477. Both piping systems can offer gaskets in a variety of materials. Generally, gaskets are more vulnerable than the pipe material to chemical attack. This is a significant concern for concrete pipe systems, which have a gasket every eight feet.

Extrusion welded Weholite systems are not subject to gasket degradation. HDPE has excellent chemical resistance to most industrial and domestic wastes. With the exception of exposure to apolar solvents (such as some alcohols, halogens and aromatics), the chemical resistance of HDPE is superior to concrete.

Polyethylene is used as a lining to rehabilitate concrete pipe or on new concrete pipe installations where high resistance to corrosion is required.

ABRASION COMPARISON
Abrasion resistance is a material’s ability to withstand mechanical erosion. Pipes used in sanitary, storm sewer and culvert applications require significant abrasion resistance, since grit and suspended solids continuously impact on the pipe wall. As flow velocity increases, so does abrasion.

The abrasion resistance of concrete pipe may be adversely affected by corrosion. As such, the specific application must be evaluated. Plastic pipe is highly resistant to abrasion. This is because its molecular composition creates a “trampoline” response when impacted by tumbling aggregate (such as grit and solids).

HDPE is three to five times more abrasion resistant than concrete pipe when tested in a Darmstadt abrasion test. In fact, HDPE often ranks first in wear resistance among pipe materials.

Dr. Louis Gabriel conducted a widely recognised comparison of abrasion resistance in 1990 at California State University. The project assessed abrasion alone and in concert with chemical corrosion. It concluded that HDPE outperformed concrete pipe.
In general, concrete and corrugated steel pipes are more vulnerable to chemical and biological attack than PVC and HDPE pipe. High resistance to chemical attack is the most attractive feature of plastic pipe.

From a study by NRC Institute for Research in Construction

Both domestic and industrial sewers contain many aggressive chemicals that can cause the corrosion of reinforced-concrete pipe. For instance, inorganic and organic acids may be present in effluents or in the subsoil of an industrial area, or they may be formed above the water line in the sewage, because of two-stage bacterial activity (Parker, 1951; Ramaswamy and Jain, 1984). Sulfate ions and other chemicals may also exist in the soil and potentially cause chemical corrosion of concrete on the outside walls.

The low abrasion resistance of concrete pipe is attributed to the brittle nature of the material.

Rigid concrete pipe requires good embedment for load distribution.

The light weight of plastic pipe, compared to that of concrete pipe, permits the use of longer sections, and the pipes can be cut at the job site for length adjustment, resulting in less effort and added flexibility during installation.

WEHOLITE VS. CONCRETE

HYDRAULIC COMPARISON

Manning’s n value for new concrete pipe is 0.010 – 0.009. The concrete pipe industry promotes the use of 0.012 – 0.013 as appropriate long-term values. This 20-30% difference accounts for a long-term deterioration in "n" value due to corrosion and abrasion. The reduction in flow capacity is anticipated, particularly in hostile environments. Manning’s tested n value for Weholite is between 0.0097 and 0.0092. For pipe exceeding 36" ID, this will approach the 0.09 value associated with solid wall HDPE pipe.

A design value of 0.010 is recommended to provide for limited deterioration while recognizing Weholite’s excellent corrosion and abrasion resistance. Still, even by conservative estimates, Weholite’s flow capacity in a gravity sewer application is 30% greater than comparably sized concrete pipe.

INSTALLATION

Concrete and Weholite pipe have very similar trenching, bedding and backfill requirements. The only notable difference is the primary backfill’s upper limit.

According to ASTM C1479-01 (“Standard Practice for the Installation of Pre-cast Concrete Sewer, Storm Drain and Culvert Pipe Using Standard Installations”), the clearance between pipe and trench wall must sufficiently allow for the specified compaction. In any case, it must be at least 1/6th of the pipe’s outside diameter (OD). ASTM D2321, (“Standard Practice for Underground Installation of Thermoplastic Pipe for Sewers and Other Gravity Flow Applications”), on the other hand, specifies a trench width wider than the compaction equipment required plus a minimum clearance of “8 inches” or “1/2 of the pipe’s OD times 1.25 plus 6 inches”. However, most user specifications, such as the OPS3, require a minimum side clearance of 12 inches (300mm) — regardless of pipe material.

Practically then, there’s no difference in trench widths for bedding and initial backfill requirements between concrete and Weholite pipe. However, standards require that the initial backfill for concrete pipe must extend to the pipe spring-line, while the initial backfill for plastic (Weholite) pipe should extend to a minimum of 6” (150mm) over the top of the pipe. The initial backfill is the zone that must be compacted to achieve the pipe’s bedding support.

Where trench settlement isn’t a concern, some minor additional effort is needed to meet the initial backfill requirements for Weholite and other plastic pipes. However, most trench applications in roadway cuts require careful selection and compaction of the trench backfill materials anyway, so there is no additional effort (or cost) involved.

SERVICE LIFE AND COST

The popular concrete design software, “PipePac 2000,” compares the lifecycle costs between concrete and HDPE (generally presumed to be circular corrugated polyethylene pipe). The software presumes a service life of 100 years for concrete pipe in all storm sewer, sanitary sewer and culvert applications. It presumes a service life value of 70 years for HDPE pipe, despite the material’s superior hydraulic, corrosion resistant and abrasion resistant properties. Although one can override the software’s service life values, many users will accept the program’s default settings. Doing so, however, will produce a result that is not supported by realistic service life values.

Concrete pipe failures (due to corrosion or abrasion) often result in a reduced service life. Joint degradation or failure may determine the effective useful life of a pipe system. Welded Weholite has no joints.

In general, Weholite’s service life will be at least 50% greater than concrete. In corrosive applications, it will be double. Although service life for both pipe materials must be carefully evaluated, concrete should never exceed the service life of Weholite pipe.

A fair cost comparison between the two materials will show similar capital costs, where the nominal pipe size is the same.

However, in many applications, smaller Weholite pipe will be used because of its superior Manning’s n value. Installation costs will vary. In areas where the trench can be open cut and where longer lengths of Weholite can be used, its installation costs should be lower.
CMP is best described as a steel pipe with one of many corrosion resistant coatings. These include:

Zinc Coating (Galvanized):
A zinc coating, 0.0017” thick, is applied to both sides of the pipe, as per ASTM A929.

Aluminized Steel Type 2:
A pure aluminium coating, 0.0019” thick, is applied to both sides of the pipe, as per ASTM A929.

Bituminous Coating:
A bituminous asphalt coating, a minimum of 0.05” thick, is applied to both sides of the pipe, as per ASTM A849. This coating can be specified on the lower half of the pipe only.

WEHOLITE VS. CMP (Corrugated Metal Pipe)

CMP Pipe Structure
Corrugated metal pipe comes in a wide range of sizes, corrugation profiles, metal gauges, joint assemblies, and coatings. As a circular pipe, it’s available in sizes up to 144” diameter. When CMP is supplied as structural plate components, spans over 20’ can be accommodated. It is also available in a variety of pipe arch shapes.

As the pipe’s diameter or multi-plate span increases, the corrugation profile features an increasing trough-to-crest height and pitch (trough-to-crest) spacing.

With allowable fill heights over 100 feet and minimum covers as low as 12”, CSP can be matched to the strength required.

Joining Systems
CMP joining systems generally feature a coupler with or without a gasket. For most drainage or culvert applications, only a mechanical connection is provided. In situations that require increased soil or water tightness, gaskets (O-rings, sleeve or strip gaskets made from butyl rubber, neoprene or other elastomeric material with or without a mastic surface) are provided.

Chemical Resistance Comparison
Chemical resistance is the factor most limiting steels use, since unprotected steel will oxidize (rust). The oxidized coating generally has a smaller volume than the base metal and will crack, leaving the base metal unprotected. Unless special protection is provided, oxidation will continue.

Hence, the manufacturer provides various protective coatings. These coatings range in thickness from 2 to 10 thousandths of an inch. Their effectiveness is limited by durability and can be damaged by shipping and handling, installation, bedding, and backfill placement — as well as internal abrasions from live loads.

Commonly in culvert applications, the entire protective coating is removed by abrasion. For example, corrosion and abrasion from highway sand and salt can cause the entire invert of the pipe culvert to wear away, leading to its structural failure and collapse of the roadway.

Abrasion Resistance Comparison
A Darmstadt abrasion test shows that steel is 5-6 times more susceptible to abrasion than HDPE. This is aggravated by the corrugations in the CSP wall, which increase the turbulence that produces abrasion. Bituminous and zinc coatings are easily removed by abrasion.

Ironically, HDPE coatings on a smooth-walled CMP provide the most effective abrasion and corrosion protection. However, it is limited by the effectiveness of the bond between the coating and base metal. In addition, the lining’s thermal characteristics also vary from those of the base metal. HDPE’s response to temperature change is approximately ten times that of steel. Even so, the long-term performance of HDPE-lined CSP is unknown, as it is a relatively new product.

<table>
<thead>
<tr>
<th>Standards</th>
<th>CMP</th>
<th>Structured Wall HDPE Pipe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size Range</td>
<td>150mm-3600mm</td>
<td>280mm to 3500mm diameter</td>
</tr>
<tr>
<td>Structural Type</td>
<td>Corrugated, Spiral</td>
<td>Closed Profile</td>
</tr>
<tr>
<td>Lengths</td>
<td>20’, various</td>
<td>12m, various</td>
</tr>
<tr>
<td>Burial Design Method</td>
<td>Flexible</td>
<td>Flexible</td>
</tr>
<tr>
<td>Installation</td>
<td>ASTM A798</td>
<td>ASTM D2321/SABS 1200 Flexible Bedding /Class C bedding for rigid pipes /ENV 1046</td>
</tr>
<tr>
<td>Manning’s n</td>
<td>0.012 – 0.025</td>
<td>0.01</td>
</tr>
<tr>
<td>Maximum Burial Depth</td>
<td>> 45m</td>
<td>12m</td>
</tr>
<tr>
<td>Ph Tolerance</td>
<td>5>ph<8</td>
<td>Tolerant</td>
</tr>
<tr>
<td>Shape</td>
<td>Circular, Arch</td>
<td>Circular</td>
</tr>
</tbody>
</table>
POLYMER PRE-COATED:
A polymer film, 0.001" thick, is laminated over the galvanized coating on both sides of the pipe, as per ASTM A742.

CONCRETE LINED:
Interior corrugations are filled to a minimum thickness of 1/8" with high strength concrete to provide a smooth interior surface, as per ASTM A979.

HDPE LINED:
Interior corrugations are filled with HDPE to produce a smooth-walled interior surface; the exterior surface is coated with a 0.01" thick protective film coating.

WEHOLITE VS. CMP (CORRUGATED METAL PIPE)

HYDRAULIC COMPARISON
CSP hydraulics cannot match those of HDPE — especially at larger diameters. The National Corrugated Steel Pipe Association recommends Manning’s n values of 0.020 for CSP with diameters of 48” and larger. It recommends Manning’s n values as high as 0.025 for CSP of 78”+ diameter and 5” x 1” corrugation. Comparatively, the Manning’s n value for Weholite does not exceed 0.01. This differential means that a smaller Weholite pipe size may be used for the same application or that the designer can specify flatter grades than would be possible with CSP.

In culvert applications, the pipe’s capacity seldom controls the system’s hydraulic capacity. Usually, the flow is inlet-controlled (limited by the ability to get the flow into the pipe) or outlet-controlled (limited by the downstream system’s ability to handle the outflow). The CMP industry has many inlet devices designed to improve a pipe’s inlet capacity.

The material’s Manning’s n value has an impact where the culvert is operating under head, or where the limiting factor is the barrel’s capacity when flowing full.

Where inlet control is the limiting hydraulic factor on a square cut culvert pipe end (regardless of which pipe material is being used), the culvert should be mitered to match the embankment slope. An inlet transition structure may also be added to channel the flow into the pipe. Both CMP and HDPE materials are easily adapted for connection to an inlet structure.

SERVICE LIFE AND COSTS
The system designer should select a service life that is consistent with the material’s proven track record. A primary application of Weholite pipe is the relining of CMP culverts that have been in service for 15-25 years. The 0.002” - 0.010” thick linings intended to extend the CMP’s service life can only be expected to do so by a nominal amount.

CSP/CMP with a low-cost bituminous or zinc coating will generally be less expensive on a capital cost basis. The material’s bedding and backfill installation requirements are comparable with that of Weholite. However, expected service life values for Weholite are 2-3 times greater than that of CMP, effectively reducing the lifecycle costs of a Weholite culvert or pipe system below that of a CMP system.
WEHOLITE VS. PVC

PIPE STRUCTURE AND SCOPE

PVC, an extruded plastic pipe, is a close cousin of the HDPE product. It's produced as a straight wall pipe or with one of several profile wall designs (such as concentric straight ribbed or concentric "T" rib). It's also available in sizes from 30" to 60" ID with a "closed" profile design.

PVC up to 15" in diameter has become the predominant pipe material for gravity sewer applications. In larger diameters, it has a much smaller market penetration. No recognised industry standards exist for PVC sizes larger than 60"; a web search did not indicate material availability in that size range.

The profile wall designs give the pipe additional stiffness and its maximum imposed load carrying capacity. PVC is produced in lengths from 13 to 26 feet and is available as a non-pressure (gravity) sewer pipe in a broad range of sizes and configurations.

In general, PVC pipe is more "stiff" than HDPE. Like HDPE pipe, it uses a flexible buried pipe design method. Imposed loads are transferred to the surrounding soil by pipe deflection. PVC's stiffness range makes it suitable for applications with a broad range of dead and live loads. But since PVC is more brittle than HDPE, extra care is required to protect it (particularly the bell and spigot ends) from shipping and handling damage.

Weholite is available in a variety of lengths and pipe sizes up to 120" ID. Standard lengths are up to 50', limited solely by shipping logistics. Weholite is the sole practical alternative to concrete pipe in these large sizes, and is the only plastic pipe option available in the 60"-120" ID range.

JOINING SYSTEMS

PVC pipe is manufactured with an integral bell end. A variety of elastomeric gasket materials are used to make the pipe joint seal. The bell and gasket joints generally meet the requirements of ASTM D3212.

ENVIRONMENTAL ISSUES

Chlorine has been identified as a carcinogenic material. And PVC production accounts for 40% of all chlorine use in the United States. Although opposition to the environmentalist movement's position on PVC use exists, Greenpeace's past success as an advocacy group suggests the PVC industry will have difficulty maintaining its market share.

CHEMICAL RESISTANCE COMPARISON

The chemical resistance of PVC and PE are similar for many applications. For example, both are well suited to resisting hydrogen sulfide corrosion. Unlike welded Weholite or lined concrete pipe systems (where the lining is extended across the gasket), the gasket in a PVC pipe system is exposed to the hostile environment inside the pipe. Hence, the corrosion resistance of the gaskets will generally be a limiting factor of the system and, like all gasketed piping systems, leakage will increase as the system ages — regardless of corrosion.

ABRASION RESISTANCE COMPARISON

While PVC has good abrasion resistance compared to steel or concrete, its abrasion resistance is generally half that of HDPE under the conditions experienced in most gravity sewer systems.

HYDRAULIC COMPARISON

Manning's n value for PVC and Weholite are 0.009 and 0.010 respectively.

INSTALLATION

Weholite and gravity PVC sewer pipes have the same trenching, bedding and backfill requirements. Installation requirements for both pipe-soil systems are specified in ASTM D2321. The primary differences between the two products are the joining systems and pipe flexibility. Weholite has a bending radius of 100-200 times the pipe's OD (depending on stiffness). So small alignment changes can be made by deflecting the pipe itself rather than the joint.

SERVICE LIFE

Like Weholite, PVC has a long service life. The pipe and joint assembly's abrasion and corrosion characteristics must be considered when selecting the service life associated with a particular application. It is unrealistic to assign service life values of 50+ years to any pipe with a gasket joint. Only fused or welded HDPE pipe will have an indefinite service life expectancy.

<table>
<thead>
<tr>
<th>PVC</th>
<th>Structured Wall HDPE Pipe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standards (USA)</td>
<td>ASTM D3034 (4"-15")</td>
</tr>
<tr>
<td>Standards (Canada)</td>
<td>CSA B182.4</td>
</tr>
<tr>
<td>Structural Type(s)</td>
<td>Straight Wall, Profile Wall, Closed Profile Wall</td>
</tr>
<tr>
<td>Closed Profile Wall</td>
<td></td>
</tr>
<tr>
<td>Size</td>
<td>4"-60"</td>
</tr>
<tr>
<td>280mm-3500mm</td>
<td></td>
</tr>
<tr>
<td>Stiffness</td>
<td>46psi (PS)</td>
</tr>
<tr>
<td>40-400 RSC</td>
<td></td>
</tr>
<tr>
<td>Unit Length</td>
<td>4-8m (13-26ft)</td>
</tr>
<tr>
<td>280mm-3500mm</td>
<td></td>
</tr>
<tr>
<td>Burial Design Method</td>
<td>Flexible</td>
</tr>
<tr>
<td>Flexible</td>
<td></td>
</tr>
<tr>
<td>Shape</td>
<td>Circular</td>
</tr>
<tr>
<td>Circular</td>
<td></td>
</tr>
<tr>
<td>Installation</td>
<td>ASTM D2321</td>
</tr>
<tr>
<td>ASTM D2321</td>
<td></td>
</tr>
<tr>
<td>Joints</td>
<td>Gasketed (D3212)</td>
</tr>
<tr>
<td>Welded (D3212) / SANS 10268-4</td>
<td></td>
</tr>
<tr>
<td>Manning's n</td>
<td>0.009</td>
</tr>
<tr>
<td>0.010</td>
<td></td>
</tr>
</tbody>
</table>
WEHOLITE VS. CPP (CORRUGATED POLYETHYLENE PIPE)

GENERAL
Corrugated Polyethylene Pipe (CPP) is intended for surface and subsurface drainage applications. In the United States, it’s manufactured to AASHTO M-294 standards. The corresponding specification in Canada is CSA B182.6. Both cover pipe sizes up to 48" only. M-294 does not include a joint leakage standard.

Weholite is manufactured to F894 standards. It is intended for low pressure and gravity sewer application in sizes up to 120" ID. F894 pipes must meet a joint tightness standard (D3212) with an established performance level that is much more demanding than normally specified for gasketed sewer systems.

Generally, CPP is made from resins with mechanical properties that are less rigorously controlled than those specified for pipe manufactured to the ASTM F894 standard. A comparison of Weholite to the AASHTO M-294 specification, CSA B182.6 specification and ASTM F894 is included in Appendix A, Table 1.

RESIN
AASHTO standard M-294 mandates the use of resins that are no longer rated for stress crack growth resistance by the ASTM standard D3350. Similarly, the resin is not rated for compressive or tensile strength by the Hydrostatic Design Basis testing method.

The Canadian standard that applies to CPP (CSA B182.6) permits a lower class of resin (P22) on the waterway wall.

SLOW CRACK GROWTH RESISTANCE
According to the old AASHTO M-294 standard, no more than 50% of the stress crack testing samples could fail within the 24-hour testing period (Class 1). Weholite adheres to the Class 4 standard (stating that a maximum 20% of samples could fail within a 600-hour testing period). This was the highest class that could be determined by the ESCR test (ASTM D1693) prescribed by D3350, the Standard Specification for Polyethylene Pipe.

Due to a problem with stress induced cracks in installed AASHTO M-294 pipe, CPP manufacturers and AASHTO undertook a systematic evaluation and recommended remedial actions.

The resulting report, published in 1999, was NCHRP Report 429. This study recommended a modified “Single Point — Notched (sample) Constant Tensile Load” (SP-NCTL) test be used for AASHTO drainage pipe. These recommendations have since been adopted by the current standard (M-294-01).

ASTM D3350 has added a PENT test as a SCR test with classifications 1 through 6. Weholite has adopted the more onerous Class 5 definition.

Two significant differences in the AASHTO M-294 and the ASTM F894 standards are the differentiated mechanical testing requirements. These comprise the new test for SCR and the M-294 requirement to undertake brittleness testing (not included in F894 because they are unwarranted by the higher grades of resin). Consequently, it’s no longer possible to compare products made to these two very different standards.

PIPE AND JOINT DESIGN
CPP pipes are formed in discrete lengths with an integral bell and spigot. A very high corrugation profile in an open profile design gives the pipe a high moment of inertia and high stiffness in the radial direction. However, the pipe’s deep exterior corrugations make it difficult to place and compact the bedding materials. As such, significant effort is required to do this properly. Since the pipe has limited stiffness in the axial direction, the placing and compacting of backfill in the haunch zone often results in localized sections of the pipe “lifting” from the desired grade.

Weholite’s closed profile structure produces high radial moments of inertia and high beam stiffness, along with a high axial moment of inertia. Radial stiffness determines the maximum load a pipe can support. Axial stiffness determines the maximum push or pull load that the pipe can sustain. It also enables the pipe to remain “on grade” during installation. The closed profile design’s smooth exterior surface simplifies the placement and compaction of bedding materials essential to the system’s performance.

CPP is available with integral bell and gasket joints. Since the standard is silent on joint integrity, CPP manufacturers normally offer a “sand-tight” joint. No objective description or standard on this type of joint exists. But the joint seal may be compromised if suitable stiffness is not achieved in the primary backfill zone (from the bottom of the trench to 300mm above the top of the pipe). Weholite comes with a wide assortment of joining methods. Welded joints (all sizes) and bell and spigot joints (15”-36”) will produce a watertight joint that meets ASTM D3212 requirements. In most applications, a welded joint will be least costly and it offers the highest performance level (no leaks).

The system is completely homogenous — with the same corrosion resistance, abrasion resistance, and mechanical properties across both the joint and pipe. Mechanical joints like Wehoseal (and several other commercially available coupling devices) will produce a sand-tight joint, but not one that is watertight.
WEHOLITE VS. CPP (CORRUGATED POLYETHYLENE PIPE)

LONGITUDINAL STIFFNESS AND INSTALLATION ISSUES

Most profile wall HDPE pipe is produced with an “open” rather than a “closed” profile. In general, the open profile is a corrugated exterior surface, usually in a circular (but also in a spiral) pattern. Open profile pipe has a high moment of inertia across the pipe wall (a high resistance to bending in a radial direction). This resists pipe deflection caused by live and dead loads.

However, open profile pipe has a very low moment of inertia in the axial direction. Consequently, axial installation pressures — such as those caused by construction equipment pushing a pipe joint together — easily deform the pipe. In wet soils, joint integrity may be compromised when a pipe section deflects due to buoyancy.

Any flexible pipe’s performance is determined by the “soil stiffness” in the trench’s primary bedding area. Soil stiffness measures the interlock between adjacent soil or bedding particles. It is highly dependent on the amount of bedding compaction imparted during pipe installation. An open profile pipe requires very careful placement of the bedding materials, especially in the haunch zone. Granular materials must be “sliced” with a shovel to ensure that the voids between corrugations are filled.

“Closed profile” pipe has a smooth interior and exterior surface. Both the radial and axial moments of inertia are high. As a result, it’s much easier to place bedding materials properly (and less critical if not properly placed). High axial stiffness allows the use of normal construction equipment to push or pull the pipe into position. The pipe’s stiffness will hold the pipe on grade (level) if met with buoyancy forces and the pipe’s smooth exterior wall enables easier achievement of the design soil stiffness (E’) than with “open profile” pipe.

CORROSION AND ABRASION RESISTANCE

The weight of an open profile CPP pipe may be up to 50% lighter than comparable (in terms of radial stiffness) closed profile Weholite pipe. Generally, the waterway wall for F894 pipe is 2.5 times that of the M-294 pipe. Long-term abrasion resistance is affected by material thickness.

While both pipes have excellent abrasion resistance (rates of material abrasion exceed that of concrete by 3-5 times), the Weholite pipe’s substantially increased waterway wall thickness will outperform CPP.
<table>
<thead>
<tr>
<th>FOOTNOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Ontario Provincial Standards OPSS 421, 1995</td>
</tr>
<tr>
<td>2 American Concrete Pipe Association, Concrete Pipe Design Manual, Illustrations 4.19 & 4.20, “Bedding Factors, Embankment Conditions” and “Trench Minimum Bedding Factors”</td>
</tr>
<tr>
<td>3 The appropriate method for confirming the joint integrity of welded Weholite is by examining the joint for leaks during the standard leak test applied to gasketed sewer systems</td>
</tr>
<tr>
<td>8 Ontario Provincial Standard</td>
</tr>
<tr>
<td>9 Environment Canada, “A Technological & Socio-Economic Comparison of Options, Part 2 — Polyvinyl Chloride,” reports that by 1993, 85% (by length) of all new gravity sewer pipe installations in the size range 4”-15” were PVC. The comparable percentage in the size range 18”-36” is 34%</td>
</tr>
<tr>
<td>10 Report to the Transportation Research Board, National Research Council dated 1999</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SCOPE</th>
<th>AASHTO M-294-01</th>
<th>CSA B182.6</th>
<th>ASTM F894</th>
<th>Structured Wall HDPE Pipe F894 & B182.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope</td>
<td>300-1200mm 12”-48”</td>
<td>450-1200mm 18”-48”</td>
<td>250-3050mm 10”-120”</td>
<td>250-3050mm 10”-120”</td>
</tr>
<tr>
<td>Type</td>
<td>Corrugated open or closed profile PE pipe & fittings with or without perforations</td>
<td>Corrugated ID based PE pipe and fittings with a smooth ID for storm & sanitary sewers</td>
<td>ID based, open or closed profile wall pipe for low pressure & gravity sewer flow</td>
<td>ID based closed profile wall pipe for low pressure & gravity sewer flow</td>
</tr>
<tr>
<td>Resin</td>
<td>Virgin PE P335400C</td>
<td>V P324420C (o/s) P221130C (l/s)</td>
<td>Virgin PE P33443C</td>
<td>Virgin PE P345464C</td>
</tr>
<tr>
<td>Values</td>
<td>300mm-345Kpa 900mm-150Kpa</td>
<td>210 & 320Kpa</td>
<td>40 RSC to 160 RSC</td>
<td>40 to 400 RSC 210 & 320Kpa</td>
</tr>
<tr>
<td>Spec. Length</td>
<td>1 diameter</td>
<td>1 diameter</td>
<td>Lesser of 2 diameters or 48”</td>
<td>As req’d by Std.</td>
</tr>
<tr>
<td>Rate of Loading</td>
<td>½” per minute</td>
<td>½” per minute</td>
<td>2” per minute</td>
<td>As req’d by Std.</td>
</tr>
<tr>
<td>Conditioning</td>
<td>40 hrs @ 23C</td>
<td>40 hrs @ 23C</td>
<td>40 hrs @ 23C</td>
<td>40 hrs @ 23C</td>
</tr>
<tr>
<td>Deflection Limit</td>
<td>3%</td>
<td>5%</td>
<td>3%</td>
<td>As req’d by Std.</td>
</tr>
<tr>
<td>Stiffness Type</td>
<td>Pipe</td>
<td>Pipe</td>
<td>Ring</td>
<td>As req’d by Std.</td>
</tr>
<tr>
<td>Frequency</td>
<td>As agreed upon by purchaser & seller (Section 10.1)</td>
<td>Once every 24 hrs, 1 per run</td>
<td>Manufacturers discretion (Section 8.3)</td>
<td>As req’d by Std.</td>
</tr>
<tr>
<td>Activity</td>
<td>ASTM D2444, 4.5kg tup</td>
<td>13.5kg tup</td>
<td>None</td>
<td>As req’d by Std.</td>
</tr>
<tr>
<td>Frequency</td>
<td>Unclear, appears to be a qualifying test</td>
<td>Once every 24 hrs, 1 per run</td>
<td>As req’d by Std.</td>
<td></td>
</tr>
<tr>
<td>Activity</td>
<td>Pipe Flattening Test (Section 7.6)</td>
<td>Compression Test (Section 8.4.1) Air Tight (Section 7.3)</td>
<td>As req’d by Std.</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>Unclear – 1 set per ‘run’ implied</td>
<td>Compression – once every 24 hrs/1 per run Air Tight – every stick</td>
<td>As req’d by Std.</td>
<td></td>
</tr>
<tr>
<td>OTHER TESTS</td>
<td>Activity</td>
<td>Resin Qualifying Test, Pipe Section 10.1 – as agreed between purchaser & seller</td>
<td>Resin Qualifying Test</td>
<td>Resin Qualifying Test</td>
</tr>
<tr>
<td>Frequency</td>
<td>Resin Qualifying Test, Pipe Section 10.1 – as agreed between purchaser & seller</td>
<td>Resin Qualifying Test</td>
<td>Resin Qualifying Test</td>
<td></td>
</tr>
<tr>
<td>Activity</td>
<td>Resin – SP-NCTL per ASTM 5397</td>
<td>Resin – ESCR or PENT Test Level 2</td>
<td>Resin – ESCR or PENT Test Level 3</td>
<td>100 hrs PENT Test Level 6</td>
</tr>
<tr>
<td>Frequency</td>
<td>Resin Qualifying Test, Pipe Section 10.1 – as agreed between purchaser & seller</td>
<td>Resin Qualifying Test</td>
<td>Resin Qualifying Test</td>
<td></td>
</tr>
<tr>
<td>Activity</td>
<td>Type</td>
<td>V P335400C</td>
<td>V P324420C (o/s) P221130C (l/s)</td>
<td>Virgin PE P33443C</td>
</tr>
<tr>
<td>Density (g/cc)</td>
<td>0.945-0.955</td>
<td>0.941-0.955</td>
<td>0.941-0.955</td>
<td>0.941-0.955</td>
</tr>
<tr>
<td>Melt Index (g/10min)</td>
<td>0.4-1.5</td>
<td>1.0-4.0</td>
<td>0.4-0.15</td>
<td><0.15</td>
</tr>
<tr>
<td>Flex. Modulus (Mpa)</td>
<td>758-1103</td>
<td>552-758</td>
<td>552-758</td>
<td>758-1103</td>
</tr>
<tr>
<td>Tensile (Mpa)</td>
<td>21-24</td>
<td>21-24</td>
<td>21-24</td>
<td>21-24</td>
</tr>
<tr>
<td>SCGR</td>
<td>SP-NCTL</td>
<td>Condition B ESCR 50% - 24 hrs or 1 hr PENT</td>
<td>Condition C ESCR 20% - 192 hrs or 3 hrs PENT</td>
<td>100 hrs PENT Test</td>
</tr>
<tr>
<td>HDB (Mpa)</td>
<td>Not required</td>
<td>Not required</td>
<td>8.62 Mpa/1250psi</td>
<td>11.03 Mpa/1600psi</td>
</tr>
<tr>
<td>OTHER TESTS</td>
<td>Colour & Stabiliser</td>
<td>C<5%</td>
<td>C>2%</td>
<td>C>2%</td>
</tr>
<tr>
<td>Wall Thickness</td>
<td>None specified</td>
<td>Min waterway wall 1.27mm</td>
<td>Min waterway wall varies by size</td>
<td>Min waterway wall varies by size (see note 1)</td>
</tr>
<tr>
<td>Joint Seal</td>
<td>None specified</td>
<td>ASTM D3212 (15psi)</td>
<td>ASTM D3212 (10.8psi)</td>
<td>ASTM D3212 (10.8psi & 15psi)</td>
</tr>
<tr>
<td>Marking Reqts</td>
<td>manu/size/Std/manu plant/date/manu mark</td>
<td>manu/size/PE class Use/std. no./date</td>
<td>Per Federal standard no. 123</td>
<td>Per Federal standard no. 123</td>
</tr>
</tbody>
</table>

Note: Weholite is available in all sizes with a waterway wall thickness that meets the minimum wall thickness requirement of ASTM F894. Some of the ‘small size – low ring stiffness’ items have a waterway wall less than the minimum where it has been possible to obtain the required stiffness with the lighter wall.
Mining & Industrial Head Office
1 Piet Pretorius Street,
Rosslyn, Pretoria
Tel: 0861 MARLEY (627539)

Branch Offices
Bloemfontein: +27 51 434 2331/5
Cape Town: +27 21 045 0050
Durban: +27 31 791 5800
East London: +27 43 726 6505
George: +27 44 874 1160
Jet Park (MEGAFLEx): +27 11 823 1160
Klerksdorp: +27 18 462 2655
Namibia: +264 61 226590
Nelspruit: +27 13 753 2571
Polokwane: +27 15 292 4141
Port Elizabeth: +27 41 045 0998
Witbank (Mining): +27 13 656 1391
Zimbabwe +263 4 663256

www.marleypipesystems.co.za